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Abstract In Machine Learning algorithms, one of the crucial issues is the representation
of the data. As the given data source become heterogeneous and the data are large-scale,
multiple kernel methods help to classify “nonlinear data”. Nevertheless, the finite combina-
tions of kernels are limited up to a finite choice. In order to overcome this discrepancy, a novel
method of “infinite” kernel combinations is proposed with the help of infinite and semi-infi-
nite programming regarding all elements in kernel space. Looking at all infinitesimally fine
convex combinations of the kernels from the infinite kernel set, the margin is maximized
subject to an infinite number of constraints with a compact index set and an additional (Rie-
mann–Stieltjes) integral constraint due to the combinations. After a parametrization in the
space of probability measures, it becomes semi-infinite. We adapt well-known numerical
methods to our infinite kernel learning model and analyze the existence of solutions and con-
vergence for the given algorithms. We implement our new algorithm called “infinite” kernel
learning (IKL) on heterogenous data sets by using exchange method and conceptual reduction
method, which are well known numerical techniques from solve semi-infinite programming.
The results show that our IKL approach improves the classifaction accuracy efficiently on
heterogeneous data compared to classical one-kernel approaches.
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1 Introduction

In classical kernel learning methods, a single kernel is used to map the input space to a
higher dimensional feature space. But for large scale and heterogeneous data in real-world
applications [17,19], multiple kernel learning (MKL) is developed [4,21]. The main intuition
behind multiple kernel learning is to combine finitely many pre-chosen kernels in a convex
combination [21]

kβ(xi , x j ) :=
K∑

κ=1

βκkκ (xi , x j ). (1)

In this paper, we shall basically refine the sum in (1) by an integral, as we shall closely
explain. In [4], a multiple kernel reformulation is modeled by semi-definite programming
for selecting the optimum weights of corresponding kernels. This reformulation has some
drawbacks in computation time because of semi-definite programming and this reformula-
tion is developed in [21] by semi-infinite linear programming with the following optimization
model:

max
θ,β

θ (θ ∈ R,β ∈ R
K )

such that β � 0,

K∑

κ=1

βκ = 1,

K∑

κ=1

βκ Sκ (α) � θ ∀α ∈ R
l ,

0 � α � C1 and
l∑

i=1

yiαi = 0,

(2)

where 1 = (1, 1, 1, . . . , 1)T ∈ R
l .

The finite combinations of kernels are limited up to a finite choice. This limitation does
not always allow to represent the similarity or dissimilarity of data points, specifically highly
nonlinearly distributed and large-scaled ones. A finite combination may fail, here. In order
to overcome this, with the motivation of previous studies [3,12,14,15], a combination of
infinitely many kernels in Riemann–Stieltjes integral form is proposed to allow an infinite
wealth of possible choices of kernels in the kernel space which is called infinite kernel learn-
ing (IKL) [12,13,16]. This makes the problem infinite in both its dimension and its number
of constraints; which is so-called infinite programming (IP). The mathematical foundations
of IKL is established by mathematical analysis and the theory of semi-infinite programming
in [12,13,16]. An infinite combination is represented by the following formula:

kβ(xi , x j ) :=
∫

�

k(xi , x j , ω)dβ(ω), (3)

where ω ∈ � is a kernel parameter and β is a monotonically increasing function of integral 1,
or just a probability measure on �. Furthermore, the kernel function k(xi , x j , ω) is assumed
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to be a twice continuously differentiable function with respect to ω, i.e., k(xi , x j , ·) ∈ C2.
The infinite combination can be, e.g., a combination of Gaussian kernels with different widths
from a set �, i.e., kβ(xi , x j ) = ∫

�
exp(−ω

∥∥xi − x j
∥∥2

2)dβ(ω). It is obvious that the Gauss-
ian kernel is from a family of twice continuously differentiable functions of the variable ω.
Hereby, the wealth of infinitely many kernels is used to overcome the limitation of the kernel
combination given by finitely many pre-chosen kernels. The questions on which combination
of kernels and on the structure of the mixture of kernels can be considered and optimized,
and it may, e.g., be answered by homotopies [12,13,16].

With this new formulation, we have the opportunity of recording (“scanning”) all possible
choices of kernels from the kernel space and, hence, the uniformity is also preserved. Let us
note that infinitely many kernels correspond to infinitely many coefficients. Kernel coeffi-
cients are defined through an increasing monotonic function by means of positive measures
[13,16].

The IKL formulation is given in [12,13,16] by

max
θ,β

θ (θ ∈ R, β: a positive measure on �)

such that θ −
∫

�

T (ω,α)dβ(ω) � 0 (α ∈ A), (4)

∫

�

dβ(ω) = 1,

where T (ω,α) := S(ω,α)−∑l
i=1 αi , S(ω,α) := 1

2

∑l
i, j=1 αiα j yi y j k(xi , x j , ω) and � :=

[0, 1] and A := {α ∈ R
l | 0 � α � C1 and

∑l
i=1 αi yi = 0} are our index sets.

We note that there are infinitely many inequality constraints because of the inequality con-
straint which are uniform in α ∈ A, and the state variable β is from an infinite dimensional
space. Thus, our problem is a one of infinite programming (IP) [1]. The dual of (4) can be
written as

min
σ,ρ

σ (σ ∈ R, ρ: a positive measure on A)

such that σ −
∫

A

T (ω,α)dρ(α) � 0 (ω ∈ �), (5)

∫

A

dρ(α) = 1.

Because of the conditions
∫
�

dβ(ω) = 1 and
∫

A dρ(α) = 1, positive measures β (or ρ) are
probability measures and these measures are parametrized in this paper via the probability
density functions as in [13,16].

We note that the primal IKL formulation (4) and the dual IKL formulation (5) are very
similar, where minimization is swapped with maximization, the direction of inequalities in
the constraints are changed in (5), the index sets A, � and the variables α, ω are replaced
with each other such that both index sets are compact and the objective functions, θ, σ , of
both the dual and the primal are continuous. Thus, similar formulations, definitions and the
theorems (covergence, discretizations etc.) written for the primal problem can be expressed
for the dual problem in terms of the variables and the index set of the dual problem. How-
ever, we observe that the primal and the dual problem are different as far as the way how

123



218 J Glob Optim (2010) 48:215–239

the sets of inequality constraints are defined. In fact, there can be problems with nondegen-
eracy (that can be related with instability) just for one of the problems, not for the other. In
[11–13,16], it is explained that the LICQ condition is violated because of the linear depen-
dency of the equality and the inequality constraints on the lower level problem of the primal
problem. In order to overcome this degenerate case, we perturbed the equality constraint of
(2) with a monotonically decreasing sequence (ξν)ν∈N such that ξν → 0 (ν → ∞), where,∑l

i=1 αi yi = ξν .

Corollary 1 [13,16] Let us assume that there exist (β, θ) and (ρ, σ ) which are feasible for
their respective problems, and are complementary slack, i.e.,

σ =
∫

A

T (ω,α)dρ(α) and θ =
∫

A

T (ω,α)dβ(ω).

Then, β has measure only where σ = ∫
A T (ω,α)dρ(α) and ρ has measure only where

θ = ∫
�

T (ω,α)dβ(ω) which implies that both solutions are optimal for their respective
problems.1

In this study, we restrict ourselves to probability measures, which constitute our subspace
of positive measures, and we use parametrized models of IKL given by probability den-
sity functions (pdfs) in [13,16]. Throughout this study, we assume that we are given pdf
function f P (ω; ·) for our primal problem. We do not need to write the equality constraint∫
�

dβ(ω) = 1, since we assume that our measures are probability measures. Then, we para-
metrize these measures via pdfs f P = f P (ω;℘P ), taking the place of positive measures
β. Let us denote the parameters of a pdf by ℘P = (℘P

1 , ℘P
2 , . . . , ℘P

ιP )T for the primal
problem. It is constrained and elements of a suitable parameter set can be written as follows:

PP := {℘P ∈ R
ιP | uP

i (℘P ) = 0 (i ∈ I P ), vP
j (℘P ) ≥ 0 ( j ∈ JP )}.

We note that after a parametrization, our primal (or dual) problem has variables in finite
dimension since instead of optimizing with respect to measure β which is in an infinite
dimensional space, we minimize with respect to the pdf parameter vector ℘P . This parame-
trization allows us to define our infinite programming problem by semi-infinite programming
(SIP) since the variables are in a finite dimension and there are infinitely many inequality
constraints. Hence, our primal problem turns into the following SIP with additional constraint
functions uP

i (℘P ) and vP
j (℘P ), coming from the definition of the parameter sets related to

the specific pdf function of the primal problem [13,16]:

(Primal SIP) min
θ,℘P

−θ

such that
∫

�

T (ω,α) f P (ω;℘P )d(ω) − θ ≥ 0 (α ∈ A),

uP
i (℘P ) = 0 (i ∈ I P ),

vP
j (℘P ) ≥ 0 ( j ∈ JP ).

(6)

2 Numerical analysis of IKL

One of the early methods mostly used to solve SIP problems in practice, e.g., in engineering
applications, is discretization [7]. It is based on a selection of finitely many points from the

1 Communication with E. J. Anderson.
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infinite index set of inequality constraints. In our study, these infinite index sets are A and �

for the primal and the dual problems, respectively.
The discretized primal SIP problem of (6) can be written by the following formulations:

P(Ak) min
θ,℘P

−θ

subject to gP ((θ,℘P ),α) :=
∫

�

T (ω,α) f P (ω;℘P )dω − θ � 0 (α∈Ak),

uP
i (℘P ) = 0 (i ∈ I P ),

vP
j (℘P ) ≥ 0 ( j ∈ JP ).

(7)

Here, by the symbol P(·) we denote the primal, k is the iteration step, and the discretized
set Ak will be discussed within Strategies I and II in Sect. 3. It is obvious that �k can be
defined by a one-dimensional uniform grid.2 Hereby, k should not be confused with our
kernel function.

Let vP (Ak), MP (Ak) and GP (Ak) denote the minimal value, the feasible set and the
set of (global) minimizers of our primal problem (6) with A replaced by Ak . Under suitable
regularity conditions (reduction ansatz) [7], the optimal solutions of the lower level problems
depend locally on the parameters, i.e., measures. Furthermore, the relation with the pdfs has
been established with a dual pairing and by the pdfs as test kind of functions from the dual
space.

Let d1 be the Hausdorff distance d1(Ak, A) between A and Ak , which is given by

d1(Ak, A) := max
y∈A

min
y′∈Ak

∥∥y − y′∥∥
2 .

Now, with the Hausdorff distance, we will introduce the discretizability notion for our prob-
lems based on the definitions in [22]. In these problems, y = α and y′ = α′ for the primal
case. In the following definitions, the distance to the solution (θ∗,℘P∗

) of the primal SIP
will be defined by the Hausdorff distance, too. We note that the optimal solution of the primal
problem exists because of the continuity of the objective functions and inequality constraints,
and compactness of the feasible sets which is proposed subsequently in Closer Explanation
1 [24]. Here, we employ Theorem of Weierstrass. We denote the distance functions d1 for
the primal problem as dP

1 .

Definition 1 The primal problem (6) is called finitely reducible if there is a finite set Ak0 ⊂
A for some k = k0 such that vP (Ak0) = vP (A), and (Ak)k∈N0 strictly isotonically increases3

as k → ∞.

Definition 2 The primal problem (6) is called weakly discretizable if there exists a sequence
of discretizations (Ak)k∈N0 such that vP (Ak) → vP (A) (k → ∞).

We note that we have vP (Ak1) ≤ vP (Ak2) if Ak1 ⊂ Ak2 for our primal problem. Let us recall
that we consider the standard form of primal SIP problems, i.e., a minimization problems. In
closer detail, as the infinite index set grows, the number of inequality constraints increases.
This forces the feasible set to become smaller at each iteration k. Thus, the minimum of the
objective function increases (see Fig. 1).

2 A uniform grid is discretization of a considered set where all elements x = (x1, x2, . . . , xl )
T have same

spacing with respect to their i th coordinate (i = 1, 2, . . . , l). For example in R
2, all rows have the same

spacing and all of the columns have the same spacing (but not necessarily the same as the row spacing).
3 A sequence (Ak )k∈N0

is called strictly isotonically increasing if Ak ⊂
�=

Ak+1 (k ∈ N0).
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Fig. 1 Symbolic illustration of the minimum values with respect to different feasible sets corresponding
different discretizations; an example

Definition 3 The primal problem, (6) is called discretizable if for each sequence of finite
grids Ak ⊂ A (k ∈ N0) satisfying dP

1 (Ak, A) → 0 (k → ∞), where dP
1 (Ak, A) =:

max
α∈A

min
α′∈Ak

∥∥α − α′∥∥
2, there exist solutions (θ̄k, ℘̄

P
k )k∈N0 of the discretized primal problems

(7) such that the following relations hold:

min
(θ,℘P )∈GP (A)

∥∥∥(θ̄k, ℘̄
P
k ) − (θ,℘P )

∥∥∥
2

→ 0 (8)

and vP (Ak) → vP (A) (k → ∞).

Corollary 2 If the primal problem (6) is finitely reducible, then it is weakly discretizable.

Proof Let us assume that (6) is finitely reducible. Then, by definition, there exist a k0 ∈ N0

and finite sets Ak0 ⊂ A such that vP (Ak0) = vP (A). Then, it is obvious that vP (Ak) →
vP (A) (k → ∞). �

Under the discretizability notion established above, we introduce the conceptual discret-
ization algorithm in the following section.

3 Conceptual discretization method

The conceptual discretization method is based on an update of the discretization according to
some stopping criterion for the convergence of the optimal solution. We adapt the conceptual
discretization method [7,8,22] to our primal problem in Algorithm 1.

In Algorithm 1, the stopping criterion is theoretically established since one needs to check,
e.g., gP ((θk,℘

P
k ),α) ≥ −δ (α ∈ A). Alternatively, we introduce some stopping criterion

based on the idea of a Cauchy sequence.
Generally speaking, in our problem and many real-world situations, an optimal solution

is not known. In order to stop at a sufficiently close approximately optimal solution, the
increment between the steps has to be small enough, i.e., ‖xk+1 − xk‖2 < ε0 for a fixed
ε0 > 0 which comes from the definition of “Cauchy sequence” evaluated at the k-th iteration
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Algorithm 1 Primal Conceptual Discretization Method (PCDM)
Input:

δ positive number, i.e., δ > 0
f P probability density function
PP the set where pdf parameters lie

Output:
θ unknown variable for minimization, to be evaluated
℘P the parameter vector of the pdf

PCDM
(
θ,℘P , A, δ, f P , PP)

1: k := 0
2: Initialize a discretization Ak ⊂ A.

3: DO Compute a solution (θk , ℘P
k ) of

min
θ∈R,℘P

(−θ)

subject to gP ((θ, ℘P ), α) � 0 (α ∈ Ak ),

uP
i (℘P ) = 0 (i ∈ IP ),

vP
j (℘P ) ≥ 0 ( j ∈ JP ).

4: if gP ((θk , ℘P
k ), α) ≥ −δ (α ∈ A) then

5: STOP
6: else
7: Ak+1 := Ak ∪ {any finitely many further points from A}
8: k := k + 1
9: end if
10: END DO

for a fixed ε0 > 0. A second alternative stopping criterion is based on the idea of a Cauchy
sequence again, but on the value of the objective function F ; it is determined by looking at
the decrement of the objective function at iterations by (F(xk) − F(xk+1)) < ε1 for a fixed
ε1 > 0. As a third alternative, the first and the second criteria are both integrated in a single
criterion by (F(xk) − F(xk+1)) ‖xk − xk+1‖−1

2 < ε2 for a fixed ε2 > 0.

In our problems, the objective functions are FP (θ,℘P ) := −θ and FD(σ,℘D) := σ for
the primal and the dual problems, respectively. With this notion, we establish our stopping
criteria in different forms. In the following, we refer to one of the stopping criteria for the
primal and the dual problems:

3.1 Stopping criteria for the primal problem

∥∥∥(θk+1,℘
P
k+1) − (θk,℘

P
k )

∥∥∥
2

< ε0 for a fixed ε0 > 0,

|−θk − (−θk+1)| < ε1 for a fixed ε1 > 0, (9)

(−θk − (−θk+1))

∥∥∥(θk,℘
P
k ) − (θk+1,℘

P
k+1)

∥∥∥
−1

2
< ε2 for a fixed ε2 > 0.

Next, we will give an important assumption for the following Theorem 2.

Assumption 1 The feasible set MP (A) is compact.
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Fig. 2 Transversal intersection (excision) of the feasible set with a box; an example taken from [18,24] (the
surface may come from an equality constraint; the figure implies perturbational arguments of [24])

Closer Explanation 1 In fact, our (feasible) set satisfies compactness on the lower level but
not on the upper level. Indeed, on the upper level, θ ∈ R is unbounded for the primal problem
(6). Let us recall that we parametrized β. We need a compact feasible set to have convergence
of subsequences towards the optimal solution guaranteed, and also for the discretizability
given in the following theorem. We encounter this problem by transversally intersecting
the feasible set with sufficiently large transversal families of elementary geometrical sets
(squares, boxes, cylinders or balls); this compactification is introduced in [18,24].

In an implicitly defined way, this corresponds to the following feasible subset of the primal
SIP with some nonnegative (semi-continuous) functions GP :

MP
comp(A) : =

{
(θ,℘P )

∣∣∣ θ ∈ R, gP ((θ,℘P ),α) ≥ 0 (α ∈ A),

(gP − GP )((θ,℘P ),α) ≤ 0 (α ∈ A)
}

, (10)

where gP ((θ,℘P ),α) denotes the inequality constraint function of the primal problem. We
note that the latter function may also be vector-valued.

Besides of this theoretical approach by function GP , a more practical one consists of the idea
of transversally cutting with a cube. This can be geometrically illustrated by the cube in Fig. 2:

Remark 1 When performing the transversal sections, it is important to take into account any
priori information given about where a possible global solution, minimizer or maximizer, of
our regarded optimization problem is located. Let us recall that we look at the primal and dual
problems after parametrization, such that the parameters themselves become new decision
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Fig. 3 Illustration of the transversal cutting around the height function with a box; an example

variables. So we choose the intersecting parallelpipe large enough in order to include such
an expected global solution. Of course, to gain that a priori knowledge, a careful analytical
investigation may be helpful and should be done, e.g., in terms of growth behaviour and
convexity kind of properties. In fact, for the ease of exposition, we just think of minimization
rather than both minimization and maximization.

As a first, simple but important class of problems we mention such ones with a strictly
convex graph (given by the constraints), i.e., an epigraph with the form of a potential, e.g., a
paraboloid. In any such a case, we know that the lower level set with respect some arbitrary
and sufficiently large level is nonempty and compact. Then, we can choose and raise our
transversally cutting parallelpipe so that, in a projective sense, the lower level set and, hence,
as an element, the global minimizer is contained in the parallelpipe and, therefore, in the
excised subset of the epigraph.

This treatment and careful geometrical arrangement guarantees the equality of set of min-
imizers of the original problem, GP (A), and the set of minimizers after compactification,
GP

comp(A), i.e., GP (A) = GP
comp(A) which is illustrated in Fig. 3.

Let us underline that our strict convexity is not guaranteed in general. In fact, the fulfill-
ment of this property on the one hand depends on how the kernel functions are chosen and
how the kernel matrices are evaluated at the input data. On the other hand, it depends on how
the parameters are involved into the density functions and how the possible nonlinearity can
be characterized by convexity and the growth kinds of conditions, e.g., in terms of Morse
indices [9].

We can adopt this idea to our problem in order to transversally cut around our height
function on the boundary of the epigraph with a cube, as shown by Fig. 3.

Under our Closer Explanation 1, we obtain a general convergence result for this method
based on Theorem 13 in [22].

Theorem 2 Let Assumption 1, after the compactification introduced in Closer Explanation
1 be satisfied, and let the primal problem and the sequences of discretizations (Ak)k∈N0 and
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(�k)k∈N0 satisfy

A0 ⊂ Ak (k ∈ N0) and dP
1 (Ak, A) → 0 for k → ∞.

Based on possible compactifications, we may from now on suppose that M(A0) and M(�0)

are compact. Then, the primal problem, (6) is discretizable, i.e., the problem P(Ak) (k ∈ N0)

has solutions (θk,℘
P
k ), and such sequences of iterative solutions satisfy

min
(θ∗,℘P ∗

)∈GP (A)

∥∥∥(θk,℘
P
k ) − (θ∗,℘P∗

)

∥∥∥
2

→ 0 (k → ∞). (11)

We refer to [22] for the proof of Theorem 2. By this theorem, we guarantee the convergence
of approximate solutions to optimal solutions for sufficiently large k with (11).

Closer Explanation 3 We note that the assumptions of Theorem 2 should be satisfied before
we discretize our infinite index set. We know that our index set A is compact, and we assume
that our sequences of discretized set Ak (k ∈ N0) converge to A. Then, our semi-infinite
problem is discretizable.

We also note that the minima which are stated in the theorem exist since the Euclidean
norm is continuous and bounded from below, and, indeed, always nonnegative. Other prop-
erties used here are the existence of optimal solution (θ∗,℘P∗

), i.e., the set of minimizers
GP (A) exists for the primal problem, since our feasible set is compact and the objective
function is continuous, and we use that the set GP is compact, too, Theorem of Weierstrass
(see [2]).

Next, we give the definition for the local primal which is defined around some open
neighbourhoods of the local minimizers.

Definition 4 [22] Given a local minimizer (θ̄ , ℘̄P ) of the primal problem (6), the primal
SIP is called locally discretizable at (θ̄ ,℘P ) if the discretizability relation holds locally, i.e.,
if there exist neighbourhoods U

(θ̄ ,℘̄P )
of (θ̄ , ℘̄P ) such that the locally discretized problem

Ploc(A) for the primal problem, namely,

Ploc(A) : min
(θ,℘P )∈U

(θ̄ ,℘̄P )

−θ

subject to
∫
�

T (ω,α) f P (ω,℘P )dω − θ � 0 (α ∈ A),

uP
i (℘P ) = 0 (i ∈ I P ),

vP
j (℘P ) ≥ 0 ( j ∈ JP )

obtained as the restriction of P(A) to open neighbourhood U(θ̄ ,℘̄P ), is discretizable.

The following Theorem 4 is based on Theorem 15 given in [22], and it gives a convergence
result for the discretization method applied to our problems. Let us recall the definition of a
local minimum of order p before giving the result.

Definition 5 A feasible point x̄ is called a local minimizer of order p > 0 of the problem to
minimize f (x) on a feasible set M ⊆ R

n if with suitable constants ε > 0 and M > 0, the
following relation holds:

f (x) − f (x̄) ≥ M ‖x − x̄‖p
2 for all x ∈ M with ‖x − x̄‖2 < ε.
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Theorem 4 Let (θ̄ , ℘̄P ) be a local minimizer of the primal problem (6) of order p, and let
sets M(Ak), M(A), be restricted to a compact subset K ⊂ R

n. We further suppose that the
Mangasarian–Fromovitz Constraint Qualification (MFCQ) (see [7]) holds at (θ̄ , ℘̄P ). Then,
the problem (6) is locally discretizable at (θ̄ , ℘̄P ). In closer detail: There is some ςP > 0
such that for any sequences of grids (Ak)k∈N0 ∈ AN0 with dP

1 (Ak, A) → 0 (k → ∞) and
for any sequences of solutions (θk,℘

P
k )k∈N0 of the locally restricted problem Ploc(A), the

following relation holds:
∥∥∥(θk,℘

P
k ) − (θ̄ , ℘̄P )

∥∥∥
2

≤ ςPdP
1 (Ak)

1/p (k → ∞)

Closer Explanation 5 The result of Theorem 4 is true for the global minimization problem
(6) since the sets M(Ak) and M(A) are restricted to a compact subset [22]. We note that after
compactification by transversally intersecting the feasible set with sufficiently large trans-
versal elementary geometrical sets (see Closer Explanation 1), we satisfy the compactness
assumption for Theorem 4.

Let us observe that the sets A and � are compact. We recall that the discretization
of � may simply be a one-dimensional grid, and the elements of the discretized set of
A may consist of a combination of its corner points, which will be explained later in
this section. All the discretized sets are further refined based on the previous sets, i.e.,
Ak ⊂ Ak+1 (k ∈ N0). The refinement of the following iterations depends on the type and
the dimension of the set. For example, if the index set Y is an interval � := [a, b], then
a one-dimensional grid Ŷ can be chosen such that the distance between neighbouring grid
points is defined by �yi := b−a

k0
(i = 0, 1, . . . , k0) for some k0 ∈ N, and with the grid

Ŷ := {yi | yi = a + i�y, i = 0, 1, . . . , k0 } ⊂ [a, b]. We can refine Ŷ by updating k0 such
that k1 = k0 + 1.

Until now, we have provided theorems which guarantee convergence of the discretization
method under some assumptions. If the dimension of the continuous index variable is larger
than 2, then the computational complexity of the discretization grows exponentially. In fact,
we need an (l − 1)-dimensional grid of the index set. For example, we use a grid of [0, C]l
for the vector α in our primal problem for the discretization of the index set A. The size of
the mesh grows fastly as the dimension l increases. In closer detail: For our primal problem
(6), the infinite index variable α is lying in an l-dimensional underlying space. Moreover, the
dimension of the elements in A is the same as the number of the training points used in our
SVM which forces the index variable to a high dimension as the number of the training points
increases. This makes the discretization algorithmically more difficult. Let us observe that
the set A is an (l − 1)-dimensional polytope, indeed, it is the intersection of the hyperplane∑l

i=1 αi yi = 0 with the box constraints 0 ≤ αi ≤ C (i = 1, 2, . . . , l), as we learn from the
definition of A.

We propose two strategies to find a discretization of the set A. The first Strategy I is based
on an interpretation of the set A by the combination of its corner points. In this way, we can
discretize the standard simplex instead of the set A directly. The second Strategy II is based
on the linearization of the set A, which is established on theoretical foundations [24].

Strategy I [10] (Triangulation):
In this first strategy, we use Lemma of Carathedory given to represent the elements of A by
its corner points. Furthermore, we apply a triangulation for some standard simplex �N and,
hence, a discretization of A will be inherited via �N . To do this, we transform the polytope
A to the standard simplex and doing a normalization by representing the coordinates of A
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Fig. 4 Illustration of the 2-simplex in R
3

with its barycentric coordinates. After Example 1, we will explain how the triangulation is
refined stepwise in an algorithmic way. Let us define the standard simplex and the relation
with barycentric coordinates:

Definition 6 For any N ∈ N0, let the standard N -simplex (or unit N -simplex) be given by

�N :=
{

a ∈ R
N+1

∣∣∣∣∣ ai ≥ 0 (i = 1, 2, . . . , N + 1),

N+1∑

i=1

ai = 1

}
.

The simplex �N is lying in the affine hyperplane obtained by removing the restrictions
ai ≥ 0 (i = 1, 2, . . . , N + 1) in the above definition.

The vertices of the standard N -simplex are the standard unit-vectors (points)

e0 = (1, 0, 0, . . . , 0)T ,

e1 = (0, 1, 0, . . . , 0)T ,

...

eN = (0, 0, 0, . . . , 1)T .

There is a canonical map from the standard N -simplex to an arbitrary N -simplex (polytope)
�̂N with vertices v1, v2, . . . , vN , given by

a �→ â :=
N+1∑

i=1

aivi (a = (a1, a2, . . . , aN+1)
T ∈ �N ).

The coefficients ai are called the barycentric coordinates of a point â in the N -simplex
�̂N (i = 1, 2, . . . , N + 1). The standard 2-simplex in R

3 is illustrated in Fig. 4.

Closer Explanation 6 In order to apply the canonical mapping with barycentric coordi-
nates, we assume A = �̂N , N + 1 is the number of vertices of A and all vertices of A
have entries never different from 0 and C. Then, we can benefit from representing the points
α ∈ A by its barycentric coordinates and by the vertices of standard simplex or, as we will
use below, we may assume all components αi (i = 1, 2, . . . , l) to be 0 or C, respectively
[10].
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Let us fix yi ∈ {±1} (i = 1, 2, . . . , l) being the output data (labels) and recall the index

set A =
{
α ∈ R

l
∣∣∣ 0 ≤ αi ≤ C (i = 1, 2, . . . , l) and

∑l
i=1 αi yi = 0

}
.

Without loss of generality, we assume that there is some i0 ∈ {1, 2, . . . , l − 1} such that
y1 = · · · = yi0 = 1 and yi0+1 = · · · = yl = −1. Furthermore, as prepared in our Closer
Explanation 6 for simplicity, we take C = 1 for this strategy. (We could also choose C
different than 1; in fact, we can apply the same procedure below.) Since

∑l
i=1 αi yi = 0, we

have the following equation from the definition of the set A:

α1 + · · · + αi0 = αi0+1 + · · · + αl , (12)

where αi ∈ {0, 1} (i ∈ {1, 2, . . . , l}). Specifically, the trivial solution to the Eq. 12 is a
vertex of our polytope A. By this intuition, we will consider the elements of polytope A by
the combination of its binary vertices.

Remark 2 The polytope A has finitely many corner points. In particular, let r := min{i0, l −
i0}. Then, A has

∑r
i=0

(i0
r

)(l−i0
r

)
corner points.

Example 1 Let l = 6, y1 = y2 = 1, y3 = · · · = y6 = −1. Then,

α1 + α2 = α3 + α4 + α5 + α6. (13)

There are 15 different corner points. The trivial one is (0, 0, . . . , 0)T , which corresponds
to the number

(2
0

)(4
0

) = 1.
We observe that we must have corner points with two nonzero elements or four nonzero

elements to satisfy Eq. 13. Let us start with the corners having two nonzero elements:

(1, 0, 1, 0, 0, 0), (1, 0, 0, 1, 0, 0), (14)

(1, 0, 0, 0, 1, 0), (1, 0, 0, 0, 0, 1), (15)

(0, 1, 1, 0, 0, 0), . . . , (0, 1, 0, 0, 0, 1), (16)

(1, 1, 1, 1, 0, 0), . . . , (1, 1, 0, 0, 1, 1), (17)

where (14), (15) and (16) represent
(2

1

)(4
1

) = 8 many points, and (17) corresponds to
(2

2

)(4
2

) =
6 many ones. Then, the total number of corner points is 1 + 2 · 4 + 1 · 6 = 15.

3.2 Algorithmic way to find all vertices (or corner points) of A

Let p ∈ A be any point. Indeed, for the ease and completeness of explanation, we may assume
that p is an interior point of A, especially, not a corner point. Now, we choose a line d through
p in A. We take two points q1 and q2 on d which lie on the opposite sides of p and maximize
the distance to p. Then, q1 and q2 must be on same hypersurfaces (hyperfaces) bounding the
convex region A. Next, choose a line d2 through q1 which lies in the hypersurface containing
q1. This line intersects that face into two parts. The face has one more codimension (one
less dimension). The point q1 is a convex combination of the two new intersection points.
Continuing this way finishes the construction principle.

We illustrate the intuition of this algorithmic way of finding corners of polytope A with
Fig. 5. Obviously, p is a convex combination of q3, q4 and q5, the vertices of A.
Now, let N := ∑r

i=0

(i0
r

)(l−i0
r

)
. Then, we can discretize the standard simplex in R

N+1 and
finally map it onto A to discretize A. More formally, we firstly recall Definition 6,

�N =
{

a ∈ R
N+1

∣∣∣∣∣ ai ≥ 0 (i = 1, 2, . . . , N + 1),

N+1∑

i=1

ai = 1

}
. (18)
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Fig. 5 Illustration of the algorithmic way of finding corner points of A; an easy example for l = 3 (in R
3)

Now, let us define a mapping

T : �N −→ A with T (a) :=
N+1∑

i=1

aivi ∈ A (a = (a1, a2, . . . , aN+1)
T ∈ �N ),

where the set {v1, v2, . . . , vN+1} consists of the vertices of A. By this methodology, we can
find the elements of this discretization Ak of A which are represented by a combination of
vertices of the simplex. This can be mathematically formulated as follows. Any point p ∈ A
can be represented by

p =
N+1∑

i=1

aivi , (19)

where the set {v1, v2, . . . , vN+1} is the collection of vertices of A and ai (i = 1, 2, . . . , N +1)

are the barycentric coordinates for A (see Definition 6). To be able to write a point p from
A as in (19), we need to find the coordinates ai (i = 1, 2, . . . , N + 1) from the standard
N -simplex. Hence, the simplex �N has to be discretized.

One of the main advantages of this strategy consists in working with the standard simplex
and its vertices. However, the discretization of the simplex is not uniform because of the
unsymmetries of the grid points. As it is clear from Fig. 6, the distances of the neighbouring
mesh points are nonuniform, i.e., �1 �= �2 �= �3 �= �4.

In order to overcome nonuniformity, we propose a method which transforms the bary-
centric coordinates of polytopes to a sphere as shown by Fig. 7 (for closer information, see
[25]). Let us consider a particular face F of some polytope and its corresponding spherical
face F ′ as shown in Fig. 7. Each point in F can be described by barycentric coordinate sys-
tems induced by vertices of F after the triangulation as given above. Let us assume that we
create a distribution of points inside F . We can obtain each of the points in this distribution
by a linear interpolation between the vertices of our barycentric coordinates system. Simi-
larly, the distribution on F ′ can be obtained through the same steps of interpolation between
the vertices of barycentric coordinate systems on the sphere [25]. Since we have a uniform
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Fig. 6 Nonuniform sampling of a standard simplex �N ; an example in R
3, �1 �= �2 �= �3 �= �4

Fig. 7 Transformation of the barycentric coordinates of a polytope to a sphere [25]

Fig. 8 Discretization of the
sphere; an example [25]

sampling over a sphere (see Fig. 8), we achieve a uniformly discretized set of points of our
polytope A.

Remark 3 It is important to observe the computational intractability of Strategy I because
of the exponential growth of the corner points, as the dimension of α, i.e., the number of
data points, increases. It is clear from the example that the number of binary vectors grows
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exponentially, namely, in the way of 2l , which makes the algorithm impractical. To make the
algorithm practical, we do not search for all corners but we generate random corners in our
implementations for exchange method which is introduced in Sect. 6.

We also propose a theoretically prepared second strategy which is based on a linearization
procedure, and the implementation is left to future study.

Next, we propose a second strategy which is more theoretical.

Strategy II (Linearization):
The second strategy is based on the linearization of A in some open neighbourhood U

(θ̄ ,℘̄P )
,

locally around a given point ᾱ ∈ A, e.g., a vertex of A. [24]. Mathematically, we define
z = T̂ (α) as follows:

T̂ :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z1 := u(α),

z2 := v�1(α),
...

zk+1 := v�k (α),

zk+2 := ζ1
T (α − ᾱ),

...

zl := ζl−1−k
T (α − ᾱ),

(20)

where k is the cardinality |L0(ᾱ)| of L0(ᾱ) := {� ∈ L | v�(ᾱ) = 0 }, L = {1, 2, . . . , 2l}. Let
L0(ᾱ) = {�1, �2, . . . , �k}, u(α) and v(α) be defining equality and inequality constraints of
the index set A defined by u(α) := ∑l

i=1 αi yi and vr (α) := αr , vs(α) := −αl−s + C (r ∈
{1, 2, . . . , l}, s ∈ {l +1, l +2, . . . , 2l}), and let the vectors ζν ∈ R

l (ν = 1, 2, . . . , l −1−k)

complete the set {∇u(ᾱ)} ∪ {∇v�(ᾱ) | � ∈ L0(ᾱ)} to a basis of R
l .

Indeed, we assume that the Linear Independent Constraint Qualification (LICQ) condition
which requires the linear independency of the equality and the inequality constraints, is
satisfied for the lower level problem of (6). Here, we refer to our analysis from Sect. 5.3.3
in [11], including the perturbation theory (if needed) as being presented there. Then, by
means of Inverse Function Theorem applied at ᾱ on T̂ , we conclude that there exist open
and bounded neighbourhoods U 1 ⊆ R

ι, U 2 ⊆ R
l around ((θ̄ , ℘̄P ), ᾱ) such that T :=

T̂|U 1×U 2 : U 1 × U 2 → W := T̂ (U 1 × U 2) is a C1-diffeomorphism. Shrinking U 1, we can

guarantee that W is an axis parallel open box around ((θ̄ , ℘̄P ), 0l ) ∈ R
ι × R

l . Then, for

each (θ,℘P ) ∈ U 1, the mapping �
(θ,℘P )

:=
(

T̂ ((θ,℘P ), ·)
)

|U 2
: U 2 → S2 is a C1-dif-

feomorphism which transforms the (relative) neighbourhood A ∩ U 2 of ᾱ on the (relative)
neighbourhood

({0} × H
k × R

l−1−k) ∩ S2 ⊆ R
l

of 0, where S2 = S(0, δ) stands for the open square around 0 = 0l with a half side of length
δ. Here, H

k denotes the nonnegative orthant of R
k :

H
k := {z ∈ R

k | z� ≥ 0 (� ∈ {1, 2, . . . , k) }.
We call �

(θ,℘P )
a canonical local change of coordinates of α. By this strategy, we locally

transform A into a rectangular manifold with corners and edges where the discretization will
takes place in. More generally, a discretization point z from the discretized set (regular grid)
H

k corresponds to a discretization point

α = T̂ −1(z) (21)
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Fig. 9 Illustration of the local discretization in H
k , P( f, g0,ν , uP , vP ) is the discretized problem and

P( f, gP , uP , vP , u, v) is the primal SIP problem, where ν is the number of grid points, f is the objec-
tive function and gP is the inequality constraint of the SIP problem; an example [24]

from the set A by the back transformation T̂ −1, implicitly represented by:

T̂ −1 :

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1

α2
...

αk+1

αk+2
...

αl

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

:= T̂ −1

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z1

z2
...

zk+1

zk+2
...

zl

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (22)

The geometric illustration is shown in Fig. 9. The details of this method can be found
in [24].

In the case of our problem, A is already given by linear equalities and inequalities. For this
reason, we can perform the linearization more easily. Indeed, we go from any vertex ᾱ to the
neighbouring vertices and, by this, find a relative neighbourhood of α in A of “triangular”
shape (cf. Fig. 10). Herewith, we obtain a linearization, but we do not guarantee 900 inscribed
at ᾱ. However, it can be achieved by the transformation described above (if being wished).

Note 1 Strategy II is more theoretical, but we can perform it more practically: it aims at find-
ing how to compute “local” (neighbourhoods). In our problems, u and v are linear, so that the
transformation T̂ is linear and that inverse transformation, T̂ −1, is linear, too. However, since
A has the special form of a polytope, one can use the neighbourhoods by the (relative) interi-
ors of sub-polytopes (generated by neigbouring vertices), as being shown in Fig. 10. If we do
this for all vertices ᾱ, then only interior points remain, which constitute an (interior sub-)
polyhedron that is often relatively small, especially, if the number of vertices is not too high.
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Fig. 10 Illustration of the (local) linearization of A, with linear u and v [11]

This interior sub-polyhedron is shown by the shaded region in Fig. 10. With such a polyhe-
dron we can proceed in our way again, and we continue, until the sub-polyhedron remaining
is small enough, indeed. Now, all subdividing sets can be discretized by some scheme (e.g.,
by some canonical grids or by a uniform sampling on a sphere after transforming barycentric
coordinates inside of the sub-polyhedron).

4 Exchange method

Another concept which is more powerful than discretization is the exchange method [6,7,22,
23]. It is, in terms of refinement and complexity of the algorithm, located between discretiza-
tion and the reduction ansatz. Given a discretization Ak , the discretized upper level problem
P(Ak) (7) is solved approximately, whereby the solution of the lower level problem

min
α

g((θ, β),α) (23)

subject to α ∈ A

is obtained, firstly. In a next iteration, the discretization points of Ak are updated, until the
algorithm terminates according to some stopping criterion. The adapted exchange algorithm
to our primal problem is given by Algorithm 2.

As it is discussed in Sect. 3, we can use anyone of the alternatives from (9) as a stopping
criterion.

In this section, we apply the exchange algorithm to our SIP problem which is param-
etrized by a well known so-called uniform continuous density function from probabibilty
theory [20]. Before constructing the algorithm, we find constraints of our density function in
the following example.

Example 2 We assume that the objective and the constraint functions, f, h, g, u, v, respec-
tively, are two times continuously differentiable C2 functions. Now, the global continuity
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Algorithm 2 Primal Exchange Method (PEM)
Input:

δ positive number, i.e., δ > 0
f P probability density function
PP the set where pdf parameters lie

Output:
θk unknown variable for minimization, to be evaluated
℘P

k the parameter vector of the pdf
αk dual variable of SVM (support vectors)

PEM
(
θk , ℘P

k ,αk, A, δ, f P , PP)

1: k := 0
2: Initialize a discretization Ak ⊂ �.

3: DO Compute a solution (θk , ℘P
k ) of

min
θ∈R,℘P

−θ

subject to gP ((θ, ℘P ), α) := ∫
� T (ω, α) f P (ω; ℘P )dω − θ � 0 (α ∈ Ak ),

uP
i (℘P ) = 0 (i ∈ IP ),

vP
j (℘P ) ≥ 0 ( j ∈ JP ).

4: Compute local solutions α i
k (i = 1, 2, . . . , ik ) of the reduced problem such that one of them, say α

i0
k , is a

global solution, i.e.,

gP ((θk , ℘P
k ), α

i0
k ) = min

α∈A
gP ((θk , ℘P

k ), α).

5: if gP ((θk , ℘P
k ), α

i0
k ) ≥ −δ with a solution (θ̄ , ℘̄P ) ≈ (θk , ℘P

k ), then
6: STOP
7: else
8: Ak+1 := Ak ∪

{
αi

k | i = 1, 2, . . . , ik
}

9: k := k + 1
10: end if
11: END DO

can fail for our function g, depending on the parametrization of the corresponding pdf.
As an example, we choose a uniform continuous density function with parameter vector
℘P = (a, b) (a ≤ b) [20]. Let us recall that the pdf of the uniform continuous density is

f P (ω; (a, b)) =
{ 1

b−a , a � ω � b,

0, ω < a or ω > b.
(24)

We observe that the term 1
b−a makes the function g (cf. (6)) discontinuous, actually, unde-

fined at a = b. On the other hand, we need an inequality constraint, e.g., of the form “≤”,
such as in a ≤ b. To encounter this, let us introduce a sufficiently small positive number
ε > 0 such that the following relation is requested:

a + ε ≤ b.

Then, we prevent from equality of a and b with this small positive number and, hence, from
discontinuity, by the additional inequality constraint functions. In the following, the algo-
rithm of exchange method for solving our primal problem parametrized by a function (24),
is presented.
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Algorithm 3 Primal Exchange Method (PEM) Parametrized by Uniform Continuous
Density function
Input:

A an infinite index set
δ positive number, i.e., δ > 0
ε positive number, i.e., ε > 0

Output:
θk unknown variable for minimization, to be evaluated
ak a parameter of the pdf
bk a parameter of the pdf
αk dual variable of SVM (support vectors)

PEM
(
θk , ak , bk ,αk, A, δ, ε

)

1: k := 0
2: Initialize a discretization Ak ⊂ A.

3: DO Compute a solution (θk , ak , bk ) of

min
θ∈R,a∈R,b∈R

−θ

subject to gP ((θ, a, b), α) := ∫
� T (ω, α) f P (ω; a, b)dω − θ � 0 (α ∈ Ak ),

a + ε ≤ b.

4: Compute local solutions α i
k (i = 1, 2, . . . , ik ) of the reduced problem such that one of them, say α

i0
k , is

global solution, i.e.,

gP ((θk , ak , bk ), α
i0
k ) = min

α∈A
gP ((θk , ak , bk ), α).

5: if gP ((θk , ak , bk ), α
i0
k ) ≥ −δ with a solution (θ̄ , ā, b̄) ≈ (θk , ak , bk ), then

6: STOP
7: else
8: Ak+1 := Ak ∪

{
α i

k | i = 1, 2, . . . , ik
}

.

9: k := k + 1
10: end if
11: END DO

The convergence of the exchange method applied on our primal problem by Algorithm 3
is presented through the following theorem [22].

Theorem 7 [22]. We refer to MP
comp(A) which is obtained by the compactification of feasi-

ble set MP (A), by transversally intersection of original feasible set with simple geometrical
bodies (e.g., parallelpipes) provided by Closer Explanation 1. Then, the exchange method
(with δ = 0) either stops at some iteration k0 ∈ N0 with a solution (θ̄ , ℘̄P ) = (θk0 ,℘

P
k0

) of

(6) or the sequence (θk,℘
P
k )k∈N0 of solutions of (7) satisfies

min
(θ,℘P )∈GP (A)

∥∥∥(θk,℘
P
k ) − (θ,℘P )

∥∥∥
2

→ 0 (k → ∞).

Proof We prove the theorem by contradiction. Let us assume that the algorithm does not
stop with a minimizer of (6). As in the proof of Theorem 2 given in [22], by our assumptions,
a solution (θk,℘

P
k ) of (6) exists, (θ̄k, ℘̄

P
k ) ∈ MP

comp(A0), and with a suitable, existing sub-

sequence (θkν ,℘
P
kν

)ν∈N0 and a vector (θ̄ , ℘̄P ) such that (θkν ,℘
P
kν

) → (θ̄ , ℘̄P ) (ν → ∞),
where the solution is in the compact elementary geometrical body (parallelpipe or so) C (see
Closer Explanation 1), (θ̄ , ℘̄P ) ∈ C and ℘̄P ∈ PP , and we find

−θ̄ ≤ v(A).
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Again, we must show (θ̄ , ℘̄P ) ∈ MP
comp(A) or, equivalently, ϕ(θ̄, ℘̄P ) ≥ 0 (α ∈ A) for

the value function ϕ(θ,℘P ) of lower level problem, i.e., ϕ(θ,℘P ) = min
α∈A

g((θ,℘P ),α).

In view of ϕ(θk,℘
P
k ) = g((θk,℘

P
k ),α1

k), we can write

ϕ(θ̄, ℘̄P )=ϕ(θk,℘
P
k )+ϕ(θ̄, ℘̄P )−ϕ(θk,℘

P
k )=g((θk,℘

P
k ),α1

k)+ϕ(θ̄, ℘̄P )−ϕ(θk,℘
P
k ).

Since α1
k ∈ Ak+1, we have g((θk+1,℘

P
k+1),α

1
k) ≥ 0 and by continuity of g and ϕ, we find

ϕ(θ̄, ℘̄P ) ≥ (g((θk,℘
P
k ),α1

k)−g((θk+1,℘
P
k+1),α

1
k+1))+

(
ϕ(θ̄, ℘̄P )−ϕ(θk,℘

P
k )

)
→ 0

for k → ∞, which concludes the proof. We refer to [7] for detailed explanation. �

5 Conceptual reduction method

The conceptual reduction method is based on local reduction which starts with an arbitrary
point x∗ (not necessarily feasible) for the SIP problem and solves the lower level problem at
that point, i.e., it solves Q(x∗) to find all the local minima y1, y2, . . . , yr of Q(x∗) (finiteness
of local minnima is assumed):

Q(x̄) min
y

g(x̄, y)

such that uk(y) = 0 (k ∈ K ) and v�(y) ≥ 0 (� ∈ L).
(25)

We note that our infinite index sets are compact, and the differentiability, nondegeneracy
and continuity assumptions of our model defining functions hold. Then, by Theorem of
Heine-Borel there are finitely many local minima of the lower level problem Q(x) indeed
(cf. [24]).

It finds the optimal solution for the reduced finite problem which has r many constraints,
and the iteration continues until the stopping criterion given by line 4 of the Algorithm 4 is
fulfilled. Alternatively, one can choose one of the stopping criteria from (9). In the following
algorithms, we presented our conceptual reduction method, adapted to the primal problem
(6) based on [7].

We observe that step 2 in Algorithm 4 is very costly as it requires a global search for min-
ima of g((θk,℘

P
k ),α) on A. We must avoid an execution of this step in the overall process as

much as possible. Step 2 assumes that there are only finitely many minima of the lower level
problem for the primal (the dual case). If it does not hold, another method, e.g., discretization,
should be used. Let us note that step 3 solves a finitely constrained optimization problem
which requires only local searches and can be efficiently performed, e.g., by a Newton-type
of method.

Remark 4 The only difference between the exchange method and the conceptual reduction
method is the starting point of the iteration. In the exchange method, we start with an initial
feasible (discretized) index set. But, on the other hand, in the conceptual reduction method,
we do not need to find a discretized set but an initial guess of the optimal solution of the upper
level problem which does not need to be feasible. In our primal problem, as it is discussed
in Sect. 2, we have difficulties in computing the discretization of the set A. We proposed
different strategies to discretize the set A by Strategies I and II. Alternatively, to solve our
primal and the dual problems, we can use the conceptual reduction method without any need
of a discretization step.
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Algorithm 4 Primal Conceptual Reduction Method (PCRM)
Input:

(θ0, ℘P
0 ) initial guess for the optimal solution which is not necessarily feasible

ε sufficiently small positive number to be used for one of the stopping criteria given by (9)
f P probability density function
PP the set where the pdf parameters lie

Output:
θk unknown variable for minimization, to be evaluated
℘P

k the parameter vector of the pdf
αk dual variable of SVM (support vectors) (i = 1, 2, . . . , r)

PCRM
(
θk , ℘P

k , αk, θ0,℘P
0 , δ, f P , PP)

1: k := 0
2: Determine all local minima α1

k, α2
k, . . . ,αr

k of

min
α∈A

gP ((θk ,℘P
k ), α).

3: DO Compute a solution (θ∗, ℘P∗) of

min
θ∈R,℘P

−θ

subject to gP ((θ, ℘P ), αl
k) := ∫

� T (ω, α) f P (ω; ℘P )dω − θ � 0 (l = 1, 2, . . . , r),

uP
i (℘P ) = 0 (i ∈ IP ),

vP
j (℘P ) ≥ 0 ( j ∈ JP ).

4: if One of the stopping criteria given by (9) is satisfied, then
5: STOP
6: else
7: (θk+1,℘P

k+1) := (θ∗,℘P∗)

8: k := k + 1
9: end if
10: END DO

Table 1 Data set description Data set # Instances # Attributes Attribute characteristics

Votes 52 16 Categorical

Bupa 345 6 Integer, real and categorical

6 Implemantation of IKL

We tested our IKL problem based on Algorithms 3 and 4 for two kinds of data sets. The
discretization of the index set is obtained by random search of corner points.

We first implemented our method on votes data which is a homogeneous data set and
secondly, we tested our method on bupa data set4 which is a heterogeneous data set. Data
descriptions are given in Table 1.

We compared our results with the single kernel SVM model introduced in Sect. 1. Fur-
thermore, we considered a single kernel SVM for the comparison with our IKL because of

4 Available from http://archive.ics.uci.edu/ml/.
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Table 2 Percentage of the accuracy

Data set Single kernel SVM (%) IKL by exchange method (%) IKL by PCRM (%)

Votes 92 75 91

Bupa 73 99 99

its simplicity. Let us note that single kernel is a special case of multiple kernel learning, i.e.,
the upper limit of multiple combination of kernel is taken as K = 1.

For both single kernel SVM and IKL, we selected the regularization constant of SVM, C ,
by 5-fold cross validation from the search set

{2−5, 2−3, 2−1, 2, 23, 25, 27, 29, 211, 213}.

The results are interpreted by the accuracy percentage which is computed by the ratio of cor-
rect classification to total number of test points. Further, we used LibSVM package [5] for
single kernel SVM and the parameter of Gaussian kernel is chosen by 5 fold cross validation
over a search set of {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}. We implemented our IKL
model by Algorithm 4 with a Gaussian kernel, and the search space for a Gaussian kernel
width is chosen as � = [0, 1]. All the implementations are done in Matlab 7.0.4. In order to
have finitely many local minima in the lower level problem and to use Heine Borel Theorem,
the domain of our variable θ is restricted to a compact set, e.g., [−100, 100]. We used the
fmincon function of Matlab Optimization toolbox to implement both the exchange and the
conceptual reduction method.

As our IKL aims to help for the classification of heterogeneous data, the results given
by Table 2 show that IKL increased the accuracy from 73% to 99% for bupa set whereas it
could not be successful for homogeneous data, votes. The results for homogeneous data can
be improved if different kernels are chosen and different numerical methods are used. This
will be a subject of our future study.

7 Conclusion

By means of new ideas, we developed well-known numerical methods of semi-infinite pro-
gramming for our new kernel machine. We improved the discretization method for our specific
model and proposed two new algorithms (see Strategies I and II). The advantage of these
methods were discussed and the intuition behind these algorithms were visualized by figures
and examples. We stated the convergence of the numerical methods with theorems and we
analyzed the conditions and assumptions of these theorems such as optimality and conver-
gence. We implemented our novel kernel learning algorithm called IKL by two well-known
numerical methods for SIP, i.e., exchange method and conceptual discretization method.
We achieved very satisfactory accuracy for heterogeneous data and we also got promising
accuracy for homogeneous data. As it was claimed by us that IKL was developed to help clas-
sification of heterogeneous data, these results validated our proposal. The accuracy results for
exchange method on votes data is not promising due to the discretization step at the exchange
method.

In addition, we intend to study infinite programming and investigate primal-dual meth-
ods instead of reducing the infinite problem into semi-infinite programming. Furthermore,
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we will investigate our works with MFCQ and strong stability of all Karush–Kuhn–Tucker
(KKT) points [7] in the reduction ansatz.
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16. Özöğür-Akyüz, S., Weber, G.-W.: Learning with infinitely many kernels via semi-infinite programming.
In: Continuous Optimization and Knowledge Based Technologies, 20th EURO Mini conference, Lithunia,
pp. 342–348 (2008)

17. Pardalos, P.M., Hansen, P. (eds.): Data Mining and Mathematical Programming, volume CRM 45. Amer-
ican Mathematical Society, Providence (2008)

18. Rückmann, J.-J., Weber, G.-W.: Semi-infinite optimization: Excisional stability of noncompact feasible
sets. Sibir. Math. Z. 39, 129–145 (1998)

19. Seref, O., Kundakcioglu, O.E., Pardalos, P.M. (eds.): Data Mining, Systems Analysis, and Optimization
in Biomedicine. Springer, New York (2007)

20. Shiryaev, A.N.: Probability. Springer, New York (1995)
21. Sonnenburg, S., Räetsch, G., Schafer, C., Schölkopf, B.: Large scale multiple kernel learning. J. Mach.

Learn. Res. 7, 1531–1565 (2006)
22. Still, G.: Semi-infinite programming: An introduction, preliminary version. Technical report, University

of Twente Department of Applied Mathematics, Enschede, The Netherlands (2004)
23. Vaz, A.I.F., Fernandes, E.M.G.P., Gomes, M.P.S.F.: Discretization methods for semi-infinite program-
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